

TCLWD050 | DATASHEET

Long working distance telecentric lens for 2/3" detectors, WD 132.3mm, magnification 0.500x, C mount

SPECIFICATIONS

0	otical	specifications
-		opeenieutiono

	0.500
(mm)	11.0
	2/3"
(mm)	132.3
	12
(°)	< 0.04 (0.06)
(%)	< 0.1 (0.2)
(mm)	2.5
	(mm) (°) (%)

Mechanical specifications

Mount		С
Phase adjustment ⁷		Yes
Length ⁸	(mm)	130.7
Front diameter	(mm)	37.7
Mass	(g)	317

KEY ADVANTAGES

Long working distance

Perfect for electronic components inspection and tool pre-setting machines.

High numerical aperture For small pixel size / high resolution detectors.

Easy rotational phase adjustment Robust and precise tuning of the lens-camera phase.

Full range of compatible products Fits LTCLHP telecentric illuminators, CMHO clamping supports and LTRN ring illuminators.

Detailed test report with measured optical parameters.

TCLWD is a range of telecentric lenses specifically designed for electronic and semiconductor Automated Optical Inspection (AOI) and tool pre-setting machines.

FIELD OF VIEW

Sensors	(mm x mm)
1/3" (4.80 x 3.60 mm x mm)	9.60 x 7.20
1/2.5" (5.70 x 4.28 mm x mm)	11.40 x 8.56
1/2" (6.40 x 4.80 mm x mm)	12.80 x 9.60
1/1.8" (7.13 x 5.33 mm x mm)	14.26 x 10.66
2/3" (8.50 x 7.09 mm x mm)	17.00 x 14.18

 1 Working distance: distance between the front end of the mechanics and the object. Set this distance within $\pm 3\%$ of the nominal value for maximum resolution and minimum distortion.

² working f/N: the real f/N of a lens in operating conditions.

³ Maximum angle between chief rays and optical axis on the object side. Typical (average production) values and maximum (guaranteed) values are listed.

⁴ Percent deviation of the real image compared to an ideal, undistorted image. Typical (average production) values and maximum (guaranteed) values are listed.

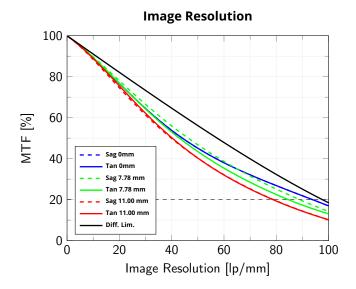
⁵ At the borders of the field depth the image can be still used for measurement but, to get a very sharp image, only half of the nominal field depth should be considered. Pixel size used for calculation is 3.45 µm.

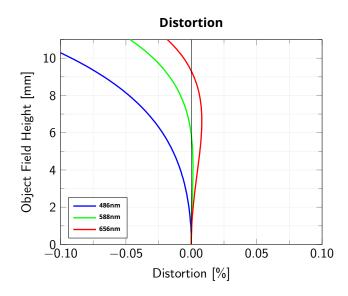
⁶ Object side, calculated with the Rayleigh criterion with λ = 520 nm ⁷ If not available, phase adjustment can be supplied upon request (ex-

cept for TC23004, TC23007,TC23009, TC23012).

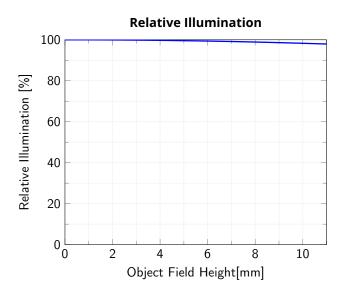
⁸ Measured from the front end of the mechanics to the camera flange.

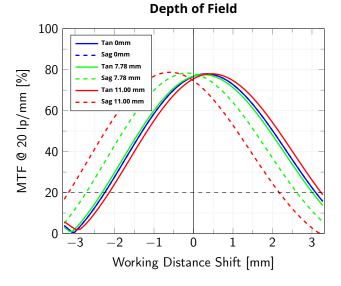
COMPATIBLE PRODUCTS


Full list of compatible products available here.


A wide selection of innovative machine vision components.

All product specifications and data are subject to change without notice to improve reliability, functionality, design or other. Photos and pictures are for illustration purposes only. Data are reported by design, actual lens performance may vary due to manufacturing tolerances.




Modulation Transfer Function (MTF) vs. Image Resolution, wavelength range 486 nm - 656 nm

Object Field Height vs. Distortion, from the optical axis to the corner of the field of view

Relative illumination vs. Object Field Height, from the optical axis to the corner of the field of view

Modulation Transfer Function (MTF) @ 20 lp/mm vs. Working Distance Shift from the best focus Working Distance, wavelength range 486 nm - 656 nm

All product specifications and data are subject to change without notice to improve reliability, functionality, design or other. Photos and pictures are for illustration purposes only. Data are reported by design, actual lens performance may vary due to manufacturing tolerances.